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SUMMARY

We have developed a new, multi-material, piecewise linear interface reconstruction method that correctly
locates the position of each material in the mesh cell and matches the required volume fractions with no
material ordering required. This is different from other volume tracking interface reconstruction methods
in which an improper material ordering may result in materials being incorrectly located within the cell.
The new method utilizes a type of weighted Voronoi diagram, known as a power diagram, to reconstruct
the interface from approximate material locations derived either from a particle model or quadrature
formula. It works on structured and general polygonal grids, for an arbitrary number of materials and can
be naturally extended to three dimensions. Published in 2007 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The effective management and capture of interfaces is essential for accurate and reliable simulation
of multi-material and multi-phase flows. Due to their strict conservation of materials, volume-of-
fluid (VOF) methods using interface reconstruction are widely used and will be the focus of this
article. VOF methods do not explicitly track the interface between materials, but rather advect
volume fractions which prescribe the material composition of each cell of the mesh. When the
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interface between materials is needed, the interface is recreated based on the material volume
fraction in the cell and its surrounding cells [1–4].

A common problem impacting these reconstruction methods is their dependence on a specified
material ordering, i.e. if more than two materials are present in a cell, the reconstruction may depend
on the sequence in which the materials are processed. This is undesirable as it may improperly
locate materials within the cell. In a finite volume implementation, this may result in material
being incorrectly fluxed into neighbouring cells.

In this article, we propose and demonstrate a method that can reconstruct a multi-material
interface with no dependence on material ordering. The method is very general: it works on
unstructured grids, accommodates an arbitrary number of materials and extends naturally to three
dimensions. The method utilizes a particle attraction model or approximate centroid calculation
to infer the relative location of the materials in the cell. Using that information, the interface is
reconstructed using a weighted Voronoi diagram, known as a power diagram, such that the required
volume fractions are matched.

2. INTERFACE RECONSTRUCTION IN VOLUME-OF-FLUID METHODS

The VOF method, originally developed by Hirt and Nichols [5], advects the fractional volumes of
each fluid in the cell to track materials in a flow simulation. The volume fraction, fm(Ci ), of a
material, m, in a cell, Ci of volume ‖Ci‖ is defined as

fm(Ci ) = Am(Ci )

‖Ci‖ (1)

where Am(Ci ) is the volume of the material in the cell. Early VOF methods used a simple interface
that was defined to be a coordinate axis aligned line within each cell that partitioned the cell into
the correct volume fractions. This is often referred to as the simple line interface calculation
(SLIC) due to Noh and Woodward [6]. This interface structure was natural when combined with
directionally split advection.

Youngs [7, 8] extended the method to permit the material interface to have an arbitrary orientation
within the cell. In Youngs’ method, the outward normal of the interface separating a material within
a computational cell is taken to be the negative gradient of the volume fraction function, estimated
using the volume fractions of that material in the neighbouring cells. On unstructured grids, the
gradient of the volume fraction function is calculated with either a Green–Gauss formula [9] or a
least-squares technique [3]. On either structured or unstructured grids, the interface is then defined
by locating a line having the prescribed normal that cuts off the correct volume of material from
the computational cell. This and other methods that allow an arbitrarily oriented linear interface
within a cell are referred to as piecewise linear interface calculation (PLIC) methods. In general,
the methods are first order and the interfaces will be discontinuous at cell boundaries. However,
there are extensions that make the reconstruction second order using a local optimization [10] or
interface smoothing [11, 12].

While PLIC methods work well for two-material cells, the method must be extended to recon-
struct the interfaces between materials in computational cells with three or more materials present.
In the ‘onion-skin’ approach, each material interface is assumed to separate two materials and
consists of a single line segment with both endpoints on the computational cell boundary. This
form of reconstruction works for simple layer structures only [7, 13]. A more general approach is
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Figure 1. Nested dissection interface reconstruction for three materials: (a) the first material is
removed leaving a smaller available polygon; (b) the second material is removed from the available
polygon; (c) the remaining available polygon is assigned to material 3; (d) the resulting partitioning
of the computational cell; and (e)–(g) show the same procedure but the materials are processed in a

different order leading to a different reconstruction (h).

‘nested dissection’ [14], where each material is separated from the others in a specified order. This
process is illustrated in Figure 1. In Figure 1(a) the first material is separated from the remaining
materials leaving a pure material region and an available polygon. Then in Figure 1(b), the second
material is removed from the available polygon according to its calculated normal and required
volume. Finally, in Figure 1(c), the remaining available polygon is assigned to the last material.
This same process can be used for an arbitrary number of materials. Unfortunately, the result of
this method depends on the order in which the materials are processed. In Figures 1(e)–(g), the
reconstruction of the cell with the same volume fractions and interface normals is performed, but
with the materials processed in a different order, leading to a different reconstruction as is seen
by comparing Figures 1(d) and (h).

The effects of material order dependency are further illustrated in Figure 2. With the correct
material ordering used in Figure 2(b), the interface reconstructed by a first-order PLIC method, is
close to the correct configuration shown in Figure 2(a). In this example, the reconstruction would
be identical to the correct configuration using a second-order reconstruction method. Using an
incorrect ordering results in substantial degradation of the interface as shown in the reconstructions
in Figures 2(c) and (d).

The calculation of the interface normal is also affected by the presence of multiple materials.
In Youngs’ method, the gradient of the volume fraction function gives the normal of the interface.
In two-material simulations, the orientation of the interface is independent of which material is
used to calculate the normal since the volume fractions satisfy the relationship f1 = 1− f2 which
gives ∇ f1 =−∇ f2. However, for multi-material simulations this simple relationship between the
volume fractions does not hold. Since the gradient or normal direction is calculated using the
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Figure 2. (a) Correct reconstruction and (b)–(d) first-order PLIC-based reconstruction using different
material orderings. The numbers designate the order in which the materials were processed.

volume fraction data in a neighbourhood of the cell being reconstructed, it may happen that
in a two-material cell, Ci , ∇ f1(Ci ) �=−∇ f2(Ci ) due to the presence of another material in
the neighbourhood used for the gradient calculation. Two different reconstructions are possible
depending on whether ∇ f1(Ci ) or ∇ f2(Ci ) is chosen as the direction for the interface normal. This
introduces a material order dependence in even two-material cells. This is shown in Figures 2(c)
and (d) as the interface of the two-material cell on the right side of the mesh has a different normal
depending on which material was processed first.

These incorrect reconstructions may adversely impact the material advection in the simulation.
If the advection routine is based on fluxing volumes through the edges of the cell, the improper
material ordering may result in a material being fluxed early or not at all. For example, if the flow
is moving diagonally towards the top right in Figure 2(c), the white material will move into the
top right cell prematurely. This can lead to a breakup of the interface, a phenomenon known as
‘flotsam and jetsam’.

Selecting a global ordering can be problematic as the appropriate ordering for one region of
the mesh may be quite wrong for another. To remedy this, there has been some work on deriving the
material order. The geometrically derived material priority byMosso and Clancy [15] is based on the
assumption of a layer structure and works by approximating the local centre of mass of each mate-
rial; then, based on the relative locations along a line, it selects an ordering. A similar approach
was developed by Benson [16]. However, both methods can fail in the presence of a triple point.

In order to eliminate the material order dependence in multi-material interface reconstruction,
we have developed a novel method consisting of two steps:

1. Relative locations of materials in multi-material cells are inferred using a particle model or
quadrature formula.
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2. Using these locations, the interface is reconstructed using a form of weighted Voronoi diagram
known as a power diagram.

The method is completely general, working on general polygonal grids with an arbitrary number
of materials in each cell. In addition, it can be naturally extended to three dimensions. In contrast to
existing SLIC or PLIC methods, all materials are processed simultaneously and, as such, have no
material order dependency. Furthermore, unlike methods such as the triple point method of Choi
and Bussmann [13], no additional extensions are required to accommodate an arbitrary number of
materials within the cell. The reconstruction will automatically give either the appropriate layer
structure or multiple triple point configuration.

3. DETERMINATION OF MATERIAL LOCATIONS

We describe two methods for determining the approximate location of each material in the cell:

1. A particle model, where particles representing the materials evolve according to an attrac-
tion/repulsion model.

2. A method of approximately calculating the centre of mass of a material in a neighbourhood
of the cell.

3.1. Material location with a particle attraction–repulsion model

In the first step of the method, a number of particles representing the materials are placed in
multi-material cells and any pure or mixed neighbouring cells. A particle, Pi , has a position, xi,
velocity vi = dxi/dt and material m(i), and is constrained to stay within the cell in which it is
initially placed.

Taking inspiration from molecular dynamics [17, 18] and smoothed particle hydrodynamics
[19, 20], we evolve the particle positions according to ‘forces’ based on the particles’ relative
locations and materials. The positions of the particles are updated through time integration of a
set of ordinary differential equations,

dxi
dt

=Vi

Vi = ∑
j :m( j)=m(i)

Vatt(xi, xj) + ∑
j :m( j)�=m(i)

Vrep(xi, xj)
(2)

where Vatt and Vrep are the prescribed attractive and repulsive ‘forces’ in the direction xj − xi.
Particles of the same material attract each other until they are very close, at which point they start
to repel each other. Particles of different materials repel each other. In our tests, the particles start
at random locations within their cell, but they can be initialized using other means such as their
relative locations in a cell at a previous time step.

The particle–particle ‘forces’ (plotted in Figure 3) are prescribed as

Vatt(xi, xj) =

⎧⎪⎪⎨
⎪⎪⎩

−1, di j<�

1 − 2d4i j + d8i j , ��di j�1

0, di j>1

(3)
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Figure 3. Particle attraction and repulsion ‘forces’ used in the model.

Vrep(xi, xj) =
{−(1 − 2d4i j + d8i j ), di j�1 (4)

0, di j>1

where di j =‖xi − xj‖/2.5h is the distance between points scaled by an interaction distance, taken
to be 2.5 times the characteristic mesh size h, and � = 0.05. Unlike a traditional mechanical model,
the ‘forces’ here actually prescribe the instantaneous velocities of the particles.

In a cell, Ci , the number of particles, N (Ci ) is

N (Ci ) =
⌊
Np × ‖Ci‖

A0

⌋
(5)

where Np is a prescribed constant (usually around 30), ‖Ci‖ is the area of the cell, A0 is a
reference cell area for the grid (for example, on a uniform Cartesian grid, A0 = h2 where h is
the grid spacing) and �a� is the floor function giving the greatest integer less than or equal to a.
Each particle has a designated material type, corresponding to a material present in the cell. Each
material that is present in the cell is represented by the same number of particles, N (Ci )/Ni

m ,
where Ni

m is the number of materials present in the cell. We found that making the number of
particles representing each material proportional to the volume fraction of the material often leads
to unsatisfactory results. If the volume fraction is small, the material will be represented only by a
few particles, which are not sufficient to provide a reliable estimate of the location of the material
within the cell. In addition, we found that for unstructured, general polygonal grids, making the
number of particles proportional to the area of the cell was important. Otherwise, the particles
tend to cluster in regions of the mesh with a concentration of smaller cells.
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Once the particles are distributed, the particle model is run. Since the model prescribes in-
stantaneous velocities and not true forces, the particles may remain in perpetual motion unless
the system is forced to ‘cool’. The velocity of each particle is rescaled at each time step to
decrease the kinetic energy of the system and force the particles to settle into a final config-
uration. At time step n in the time integration of Equation (2), the kinetic energy of all the
particles is

KEn = ∑
i

1

2
‖Vi‖2 (6)

After the system is sufficiently agitated, typically after 5 to 10 time steps, we force the kinetic
energy to decrease as,

KEn+1��KEn (7)

where 0<�<1. In practice, � is set to be 0.7–0.9. If KEn+1�KEn , all the particle velocities are
scaled as

V′
i =

√
�

KEn

KEn+1
Vi (8)

To speed up the calculation, we use a variable time step with a new �t calculated after each time
step as

�t = 0.1

2‖Vmax‖ (9)

where ‖Vmax|| = maxi ‖Vi‖ where Vi is as defined in Equation (2).
The positions are then updated as

xn+1
i = xni + �tV′

i (10)

If a particle goes outside the cell, it is placed back in the cell by repositioning it to the centre
of the triangle formed by the old position, the new position, and the centre of the cell. If that fails,
the particle is kept in its old position.

The particles are allowed to evolve for a number of time steps until the average kinetic energy
of each particle has dropped below a specified stopping criterion. The particle model exhibits
rapid convergence to the particle clusters, usually requiring under 20 time steps to converge to
approximately the final positions. We have conducted statistical tests that show the model displays
little sensitivity to the random initial particle positions, with standard deviations in the final material
locations typically less than 5% of the mesh spacing [21].

Once the velocity of the particle has dropped to a sufficiently low threshold, the positions of
the materials in the cell need to be derived from the final location of the particles. However,
the particles of a material may form multiple groups. A clustering algorithm is needed to detect
the multiple clusters and utilize that information to capture the subcell structure. A naive averaging
of the particle positions for each material can yield reasonable results if each material in the cell
is accurately described by a single convex polygon, but it will not detect the presence of multiple
clusters of particles which may occur when thin filament-like structures are present.
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(a) (b)

Figure 4. (a) Thin filament structure and (b) converged particle locations from the volume fraction data.
The cluster locations are designated with the dark circles. The highlighted cells show where the filament
has multiple interfaces within the cell. In these cells, away from the boundary, multiple clusters of particles

are detected by the k-means clustering algorithm.

A simplified version of the k-means clustering algorithm [22], is used to detect if the particles
of a material form one or two clusters. The algorithm proceeds as follows, for each material:

1. Initialize cluster 1 with the position of any particle of that material.
2. Initialize cluster 2 with the position of the particle of the same material farthest from cluster 1.
3. Assign each particle to the closest cluster.
4. Compute the mean position of all particles in each cluster to obtain new cluster locations.
5. Repeat steps 3 and 4 until the cluster locations converge or one cluster contains no particles.
6. If the two clusters are sufficiently close, that is, the distance between them is less than 10%

of the characteristic mesh size, then use the average location of all of the particles of that
material instead.

The clustering algorithm converges rapidly and is robust.
Figure 4 shows the example of a narrow filament. The particles reflect the thin filament structure

present. The clustering algorithm is able to detect the presence of the multiple clusters within a
cell. With the exception of cells at the boundary, multiple clusters are present and detected in all
of the cells where the filament has two interfaces within the cell. These cells are indicated as the
highlighted cells in Figure 4.

If there are multiple clusters of a material, the volume of material must be partitioned between
the clusters. The number of particles in each cluster does not give a reliable means to do this as
it can vary depending on the initial conditions. Instead, we partition the material volume equally
between the clusters as we have no knowledge of the relative volume of the two regions of the
material within the mesh cell.

3.2. Material location via approximate centres of mass

An alternative to the particle model is the direct calculation of an approximate centre of mass of
each material in a subset of the mesh around the cell being reconstructed. In a region of the mesh,
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�, assume a material occupies a non-trivial subset �m ⊆ �. The centre of mass of the material in
the mesh region, � is given as

xm(�) =
∫
� x�m(x) dx∫
� �m(x) dx

(11)

where �m(x) is the characteristic function for material m, defined as

�m(x)=
{
1, x∈ �m

0, x /∈ �m
(12)

However, �m and �m are unknown.
If we assume that within each cell the centre of mass of each material contained within that

cell is approximately the centroid of the mesh cell, then Equation (11) may be approximated for
a region of the mesh larger than the cell of interest. In particular, if we take � to be the mesh cell
we wish to reconstruct and all of its neighbours, the approximation takes the form

x̃m(Ci ) =
∑

C j∈Ni
fm(C j )‖C j‖xc(C j )∑

C j∈Ni
fm(C j )‖C j‖ (13)

where Ni is the set of mesh cells including the cell being reconstructed, Ci , and all of its
neighbouring cells. xc(C j ) is the centroid of mesh cell C j . Similar formulations for a regional
centre of mass derived from the volume fraction data have been used by a number of investigators
[15, 16, 23].

These approximate centres of mass will be for the regionNi and will in general not be contained
within the cell Ci . However, it gives some information regarding the relative location of materials
in a cell.

4. POWER DIAGRAM-BASED INTERFACE RECONSTRUCTION

Once the materials are located in a cell, the interfaces within the cell, separating the materials,
are constructed using a power diagram. A power diagram or Laguerre diagram [24, 25] is a
generalization of a Voronoi diagram generated from a set of points, S, each with an associated
radius or weight. In this context, the generators will be the points determined either by the particle
clusters or the approximate centroids. The Laguerre distance from a point x∈ Rn to a point mass,
si ∈ S with si = (xi, wi ) is defined as

d2L(x, si ) = d2(x, xi) − wi (14)

where d2(x, xi) =∑n
i=1 (x − xi )2 is the usual Euclidean distance in Rn . If wi is replaced with w2

i
in Equation (14), the resulting distance is called the power of the point x with respect to xi.

Each cell in the power diagram is the set of points

cell(si ) ={x∈ Rn|d2L(x, si )<d2L(x, s j ) ∀s j ∈ S, s j �= si } (15)

As with Voronoi diagrams, each power diagram cell is convex.
The weight associated with a point generator can be interpreted as the square of the radius

of a circle centred at that point. The power bisector (a chordale in Aurenhammer’s terminology
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Figure 5. Power diagram with four generators (V 1–V 4) and their weight circles. The generators V 1 and
V 2 do not lie within their corresponding cells.

[24]) between two points si = (xi , wi ) and s j = (x j , w j ) is the line perpendicular to the segment
connecting the points xi and x j and is located by finding a point, x0 on that segment such that
d2L(x0, si ) = d2L(x0, s j ).

An example of power diagram is shown in Figure 5. Clearly, if all point masses have equal
weight (or radius), the power diagram reduces to the usual Voronoi diagram. Unlike a Voronoi
diagram, a point in the point set generating the diagram does not necessarily lie in the cell to
which it corresponds, as is this case for generators V 1 and V 2 in Figure 5. Furthermore, the cell
corresponding to a given point mass, may be trivial, that is cell(si ) = ∅. In practice, this is not a
problem. Imai et al. [25] provide a useful lemma that provides a sufficient condition for the power
diagram cell of a point to be non-trivial:

Given the power diagram for a finite set of point masses, S = {s1, . . . , sn}, cell(si ) is non-trivial
if si lies on a corner of the convex hull of S.

If only three materials are present (i.e. S consists of only three point masses), then the point
mass corresponding to each material must necessarily be a corner of the convex hull assuming the
three points are not collinear. This ensures that the power diagram in each cell with three materials
will always be non-trivial for all choices of weights. If the points are collinear, then the cell is
partitioned by two parallel lines which can obviously be made to cut off the appropriate volume
fractions. The same argument applies to three and four material cells in 3D. Proving this for larger
numbers of materials is more difficult. However, we have not encountered a scenario where we
are unable to find a power diagram that matches the required volume fractions.

The power diagram can be constructed in a number of ways. A power diagram may be created
through a randomized, incremental algorithm [26], similar to the incremental construction of a
Delaunay triangulation. A Voronoi diagram of the point generators may also be efficiently converted
into a power diagram [27]. However, we have chosen a simple algorithm that intersects all of the
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mutual power bisectors. It has O(n2) asymptotic complexity in the number of generator points.
For our applications, the number of materials in a cell, corresponding to the maximum possible
number of power diagram cells, is small (typically 5 or less), so the asymptotic complexity of the
construction algorithm is not a problem. In addition, it has proven to be robust in finite precision
arithmetic.

4.1. Matching volume fractions

The volume fractions of the materials in a cell are matched by iteratively adjusting the weights
of the point generators, thereby adjusting the area of the power diagram cells once clipped to the
mesh cell. This requires the solution of a set of non-linear equations

Am(�1, . . . , �Nm ) =‖Ci‖ fm, m = 1, . . . , Nm (16)

where Am(�1, . . . ,�Nm ) is the area of the power diagram corresponding to material m after it
has been clipped by the bounding mesh cell polygon with area ‖Ci‖. fm(Ci ) is again the volume
fraction for material m in cell Ci . The constraint

Nm∑
m

Am(�1, . . . , �n) =‖Ci‖ (17)

reduces the number of equations to Nm −1. Specifically, this is done by forcing one of the weights
to be a specified value. This enforces a unique set of weights for the desired power diagram.

A Newton procedure with a finite-difference Jacobian is used to solve Equations (16) and (17).
Some caution is required, since the area of each cell is bounded above and below, that is

0�Am(�1, . . . , �n)�‖Ci‖, m = 1, . . . , Nm (18)

For extreme values of the weights, some of the power diagram cells will be outside of the mesh
cell and as such have zero area once clipped to the mesh cell. Furthermore, the Am will be flat
(that is they have a zero gradient) making the Newton procedure fail. As a result, the Newton
procedure needs to adjust for overshoots to make sure it does not end up in this region. This is
simply done by reducing the size of the Newton step at each iteration if it exceeds those bounds.
We found the procedure to be robust and efficient, typically matching the required volumes to
within 10−12‖Ci‖ in 3–6 iterations.

For the initial guess, we use equal weights for all the point generators if all of the generators
lie within the mesh cell being reconstructed. If any of the generators are outside the cell, as may
happen with the approximate centre of mass calculation, the initial weights are assigned such that
the power bisectors between all the generators go through the centroid of the cell. This ensures
that the initial power diagram will not have any cells outside of the mesh cell.

4.2. Reconstruction fidelity

The use of the power diagram to reconstruct the interface is based on the assumption that we
have been able to obtain an approximation to the location of each material in the cell. Indeed, if
the point generators for the power diagram are the exact centres of mass of the material subcells,
the reconstruction is representative of the actual configuration. In Figures 6 and 7, the power
diagram reconstruction of different three-material cells, using the actual material centres of mass
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Figure 6. The true material interfaces and their centres of mass are shown in the top row with the power
diagram reconstruction using the centres of mass in the bottom row. Here, the radius of curvature of all

of the true interfaces is set to R/h = 1.

Figure 7. The asymptotic convergence of the power diagram reconstruction using the centres of mass as
the radius of curvature of the interfaces becomes large. The power diagrams are unable to recreate the

interfaces exactly. Here R/h = 256.

as generators, are shown. The power diagram provides a reasonable approximation to the true
interface for interfaces with a radius of curvature comparable to the mesh spacing. As the radius
of curvature goes to infinity, the interfaces straighten, but the power diagram does not necessarily
converge to the true interface as illustrated in Figure 7. Still, the materials retain their relative
locations within the cell.

In the following section, we present some static interface reconstruction examples using the
power diagram-based reconstruction with point generators derived from the particle model and the
approximate centroid calculation.
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5. NUMERICAL EXPERIMENTS

To assess the overall performance of the method, a number of numerical experiments were per-
formed.

In Figure 8, a four-material interface reconstruction on a structured grid is shown. As can
be seen, our reconstructions respect the symmetry in the problem. The particle model derived
material locations shown in Figure 8(a) are completely symmetric and result in a near perfect
reconstruction. The reconstruction using approximate centre of mass-derived material locations
shown in Figure 8(b) is exact. Observe that the material locations shown in the inset are outside
of the centre cell. In the material order-dependent Youngs’ method reconstructions in Figures 8(c)
and (d), the reconstruction in the centre cell is not symmetric due to the material ordering. In
fact, for this example, no material ordering will enable Youngs’ method to create a completely
symmetric reconstruction.

For the unstructured grid shown in Figure 9, neither power diagram-based reconstruction exactly
reproduces a straight line, indicating that the reconstruction cannot be second order [10]. Still, in

(b)(a)

(d)(c)

Figure 8. Four-material interface reconstruction using: (a) particles and power diagrams;
(b) approximate centroids and power diagrams; and (c), (d) Youngs’ method with two dif-
ferent material orderings. The insets show the four-material cell at the centre of the mesh.
The converged particles locations for the centre cell are also shown in the inset in (a). The

approximate centres of mass for the centre cell are shown in (b).
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(b)(a)

(d)(c)

Figure 9. Four-material interface reconstruction on an unstructured grid using: (a) particles and power
diagrams; (b) approximate centroids and power diagrams; and (c), (d) Youngs’ method with two different
material orderings. The insets show the four material cell at the centre of the mesh with the particles for

the centre cell in (a) and the approximate centres of mass for the centre cell in (b).

the multi-material centre cell, the power diagram-based reconstructions in Figures 9(a) and (b)
are more representative of the structure of the true configuration. In Figures 9(c) and (d), the
material order dependency provides significantly different reconstructions for the four-material
centre cell. This and the structured example in Figure 8 demonstrate the strength of our method
in reconstructing multi-material cells. In two-material cells, Youngs’ and related methods do quite
well, as is shown in Figures 9(c) and (d) in the regions away from the centre. An effective strategy
is to use existing methods for two-material cells, and a power diagram-based method for cells
containing three or more materials. In Figures 8 and 9, the power diagram reconstruction was
used on the entire mesh, which would not typically be done in practice.

Figure 10 shows the reconstruction of a filament-type structure that is not aligned with the grid.
The filament is preserved with all the three-material cells showing the proper material positions.
The power diagram reconstructions shown in Figures 10(c) and (d) do not reverse the location
of the materials relative to the filament as does Youngs’ reconstruction with the wrong material
ordering as shown in Figure 10(b). The power diagram-based method fails to exactly reproduce
a straight line in both Figures 10(c) and (d). The reconstruction in the cells at the top and
bottom of the grid in Figures 10(c) and (d) could be improved with better boundary treatment. No
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(b)(a)

(d)(c)

(f)(e)

Figure 10. Multi-material interface reconstruction for a filament: Youngs’ reconstruction with (a) correct
material ordering and (b) incorrect material ordering; (c) particles and power diagram reconstruction in all
cells; (d) approximate centroids and power diagram-based reconstruction in all cells; (e) mixed approach
using Youngs’ method for two-material cells and particles and power diagram reconstruction in three or
more material cells; and (f ) mixed approach using Youngs’ method and approximate centroids and power
diagram reconstruction. The three-material cells using the power diagram-based reconstructions are in
bold in (e) and (f). Notice the presence of the white material on the right-hand side of the filament in

Youngs’ reconstruction in (b). This can lead to ‘flotsam and jetsam’.

special treatment was used at the boundary for either the particle method or approximate centroid
method. With the correct material ordering, Youngs’ method produces a very good reconstruction
as shown in Figure 10(a). This motivates the use of a mixed method using Youngs’ method for
two-material cells and a power diagram-based reconstruction for three or more material cells.
These reconstructions are shown in Figures 10(e) and (f). The multi-material cells, shown with
bold outlines, used a power diagram-based method while the rest of the interface was reconstructed
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using Youngs’ method. These reconstructions do not have the material ordering problems as would
Youngs’ method used on all mesh cells.

6. CONCLUSIONS

We have developed a first-order method for material order-independent reconstruction of multi-
material cells. It is based on the determination of the relative locations of each material in a cell
and then reconstructing the interface using a power diagram, that once clipped to the mesh cell,
matches the desired volume fractions. The method does not assume a topology for the material
regions, i.e. a layer structure or triple point configuration. Furthermore, all of the material regions
created will be convex.

The performance of the particle model is good. The average particle position converges to within
a few per cent of its converged position in under 20 time steps of the attraction–repulsion model.
Furthermore, the particles do not show much sensitivity to the random initial conditions used.

The approximate centre of mass approach typically gives better results, and relies on no externally
supplied parameters. In addition, while being highly problem dependent, it can be around 50 times
faster than the particle method. Neither the particle model nor approximate centre of mass method
when combined with a power diagram-based reconstruction exactly reproduces a straight line,
indicating both methods are only first-order accurate. While the potential for the particles to detect
the presence of a thin filament within the mesh through the determination of multiple particle
clusters is intriguing, we recommend the approximate centre of mass approach, particularly when
subcell details such as thin filaments do not have to be resolved.

The power diagram-based interface reconstruction maintains the relative location of the mate-
rials within the cell and may be useful in other methods utilizing approximate material location
information.

As two-material reconstruction algorithms are reliable and well established, this method would
be most applicable for reconstruction of only cells containing more than two materials. This
reconstruction method is currently being implemented in multi-material flow codes to further
understand the combined errors of advection and interface reconstruction.
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